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Abstract

We introduce a new general methodological approach for accurately and consistently
retrieving a large set of patents related to specific technologies. We build upon the
automated patent landscaping algorithm by incorporating a tractable amount of human
supervision to improve the accuracy and consistency of our results. We demonstrate the
efficacy of our approach by applying it to six novel and representative technologies:
additive manufacturing, blockchain, computer vision, genome editing, hydrogen storage,
and self-driving vehicles.

Introduction 1

Modern growth theory underscores the pivotal influence of frontier technologies in 2

fostering long-term economic advancement and broader societal progression [1, 2]. The 3

genesis, dissemination, and adoption of these technologies is a central subject of 4

investigations spanning various field of the social sciences, including policy, finance, 5

education, and management [3–6]. Yet, grasping the diffusion of frontier technology is 6

empirically challenging, given the intricacies involved in accurately characterizing and 7

delineating them. This paper presents a novel approach based on patent data to tackle 8

this challenge. 9

Many scholars and analysts employ patent data to measure innovation. Traditionally, 10

they have turned to technological classifications designated by intellectual property (IP) 11

offices, such as the “Cooperative Patent Classification” (CPC), to identify clusters of 12

patents related to given technologies. However, this method has notable limitations, an 13

issue often referred to as the “patent classification problem” [7]. Standard classifications 14

by IP offices are constructed with technical attributes in mind and frequently deviate 15

from an economist’s interpretation of a technology. Designed primarily for engineers, 16

these classifications emphasize techniques over functional applications. As a result, a 17

single technology can be fragmented across multiple, seemingly unrelated classes. For 18

example, [8] points out that a subclass related to dispensing solids included patents on 19

both manure spreaders and toothpaste tubes. 20

To address this issue, we introduce a novel, generalizable method to accurately and 21

consistently retrieve a vast set of patents related to a specific technology, in the sense of 22
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a functional application. Enhancing the machine learning-based algorithm proposed 23

by [9]–which emulates human curation on a large scale–we infuse a tractable measure of 24

human supervision to elevate the accuracy and uniformity of our outcomes. To 25

illustrate our method, we apply it to six cutting-edge technologies: additive 26

manufacturing, blockchain, computer vision, genome editing, hydrogen storage, and 27

self-driving vehicles. Selected to span various economic sectors and maintain conceptual 28

cohesion, these technologies showcase the versatility of our approach. Critically, our 29

methodology is adaptable, allowing researchers to assess any technology using patent 30

data and trace its evolution over time. 31

Delineating technologies within the vast patent corpus is a topic of active 32

exploration. Scholars such as [10] and [11] have delved deep into the patent corpus, 33

examining the diffusion of frontier technologies characterized by their radicalness, 34

novelty, speed of diffusion, potential for significant impact, and associated risks [12]. On 35

the other hand, focused studies like [13] specifically probe phenomena such as the rise in 36

software patenting. Regional patent offices also contribute by proposing mapping of 37

technologies, often based on experts judgement [14]. Our research aims to provide 38

additional depth to the current discourse on methodologies used to categorize patents 39

within certain technological domains. In pioneering efforts like [15]’s examination of 40

Computed Tomography Scanners, the patent classification leaned heavily on manual 41

curation–a process that was undeniably tedious and time-intensive. Some researchers, 42

including [10], favored rule-based categorizations, marrying keywords with CPC classes. 43

However, these approaches often rested on ad hoc rules, necessitating deep domain 44

expertise. The European Patent Office’s investigation into automated vehicles serves as 45

a salient example of this rule-based methodology [16]. 46

Recent advancements have increasingly leaned towards scalable, technology-driven 47

techniques in patent categorization. Notably, [9] introduced the innovative concept of 48

“automated patent landscaping”, which closely emulates the precision of manual 49

classification while only needing a select subset of representative patents. This 50

movement towards automation has been bolstered by the incorporation of natural 51

language processing and machine learning to enhance the patent categorization process. 52

A noteworthy example is the Fung Institute’s initiative, which leverages machine 53

learning for automatic patent labeling. Complementing this, [17] refined the [9] 54

technique to cater specifically to AI-related patents. Our contribution situates itself in 55

this evolving landscape. Drawing inspiration from the latest research, we have 56

augmented the algorithm from [9]. We have modified both the selection mechanism for 57

the representative set of patents and the algorithm’s subsequent expansion from this 58

foundational set. In essence, our methodology combines a small amount of human work 59

and automated landscaping to select patents related to a given technology with a high 60

degree of precision and with no limitation in geographical coverage, and has been 61

designed with the view of being easily extended to other technologies. 62

1 Technology definition and selection 63

We illustrate our methodology using six example frontier technologies. Although our 64

approach can be adapted to a multitude of cases, we selected these six candidates 65

because they span various fields, are universally acknowledged for their high potential, 66

and can be distinctly defined by a specific set of tasks. 67

1.1 Definition 68

Technology is a widely used term and can refer to many different concepts. In the 69

economic and innovation literature, we classified its main usages into three categories 70
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which we refer to as “technique”, “functional application” and “application field”. A 71

technique is a set of processes sharing a common methodological paradigm. Two distinct 72

techniques can share a common goal. For example, TALENs, Zinc Fingers and CRISPR 73

are all distinct techniques pursuing the same goal of editing the genome. A functional 74

application is a high level goal which is directly targeted by one or several techniques in 75

the course of their developments. Examples include computer vision and genome 76

editing. The range of their market applications can vary and usually exceed a single 77

market. Eventually, an application field is an existing or newly created economic market 78

which can leverage functional application to develop new or improve existing products. 79

Examples of application fields include smartphones, nuclear power generation, etc... 80

In our approach, we want to work at the functional application level. This comes as 81

a natural choice since we are interested in frontier innovation which has the potential to 82

give advanced economies a significant growth momentum. Hence, our focus is on 83

technologies which, like General Purpose Technologies, have the ability to infuse 84

progress in a large range of applications. Function applications can be characterized by 85

a set of tasks (for example, one of the task of autonomous vehicles is to enable cars to 86

make autonomous decisions) which we will use to guide our selection procedure. 87

1.2 Selection 88

There are two main ways to define a set of technologies of interest: the supervised and 89

unsupervised approaches. The most common approach, the “supervised”, is based on 90

human curation of technology-related documents. This is the approach followed by [10] 91

who define a list of technologies in the high-tech segment from prior knowledge. The 92

second and more recent approach, the “unsupervised”, combines text mining 93

(specifically “topic modelling” techniques) and technology-related corpus to identify 94

technologies (e.g. topics) without any use of prior knowledge. Such a method is 95

implemented by [11] who use earnings conference call transcripts to uncover 96

technologies which are the most frequently cited for their contribution to companies’ 97

momentum (see also [18] for an application to scientific fields). 98

Although extremely appealing, the unsupervised approach presents two limitations 99

in our context. First, and most importantly, relying on past financial and corporate 100

documents will invariably miss frontier technologies with still nascent market 101

applications. Second, existing topic modeling techniques cannot guarantee that the 102

identified “topics” (here technologies) are conceptually homogeneous. Without any 103

supervision, selected technologies might (and will) include techniques, functional 104

applications and application fields indifferently. 105

We opted for the supervised approach but designed a methodology to minimize our 106

own biases and discipline the selection process. In particular, we sought to restrict to 107

technologies that are considered as impactful and radical by many different institutions 108

of different nature and geographical location. Do to so, we first screened a large number 109

of reports and articles published at different time and dedicated to breakthrough 110

technologies. These articles have various sources: international institutions 111

( [19,20], [21]), national agencies ( [22], [23]), industry associations [24], experts ( [25]) 112

and consulting companies ( [26,27]). We took care to include sources from both 113

developed and developing countries. From those documents, we listed without any a 114

priori more than 30 technologies in a broad sense. Then we classified these items into 115

the three aforementioned categories (technique, functional application and application 116

field) and kept only those entering the “functional application” category. Eventually, we 117

reviewed the remaining candidates (goals, recent breakthroughs, expected economic 118

impact, and development stage) with two main objectives in mind: 1) only keep 119

technologies that have already proven to have market applications or are expected to do 120

so in the near future and 2) cover a large number of distinct application fields. From 121
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our initial list of technologies, we ended up with six frontier technologies: additive 122

manufacturing, blockchain, computer vision, genome editing, hydrogen storage and 123

self-driving vehicles. See Supporting Information 1 for more details about how we 124

selected the six technologies. 125

1.3 Six different technologies 126

Before moving to the description of the automated patent landscaping methodology, we 127

briefly discuss the characteristics of the six technologies considered in this article and 128

why they constitute a relevant panorama of frontier technologies at the dawn of the 21st 129

century. A brief individual description and discussions about market potential are 130

available in Supporting Information 1. 131

Additive manufacturing, blockchain, computer vision, genome editing, hydrogen 132

storage, and self-driving vehicles are all technologies that are seen as having the 133

potential to fundamentally disrupt our daily lives, are growing rapidly, and are receiving 134

large investments. They are however at different stage of their development. Additive 135

manufacturing, and computer vision are technologies that have been developed for 136

decades with existing commercial applications. It is usually acknowledged that the first 137

3D-printing patents are filed in the first half of the 1980s [28] and the history of 138

computer vision starts with the development of digital image scanner in the 1960s. 139

Self-driving vehicles have been the subject of significant research at least since the 140

1970s, but the process of developing a fully autonomous commercial vehicle is not yet 141

complete. Finally, hydrogen storage, genome editing and blockchain are more recent 142

technologies, even if in some case, research started many years ago. Supplementary 143

Figure S3-2 shows the number of patent publications in each of these technologies each 144

year (these patents have been selected with a methodology that we detail in the next 145

section from the Google Patent dataset). 146

These technologies also differ in their development. While Additive manufacturing, 147

computer vision and self-driving vehicles are the subject of massive investments by large 148

industrial groups for several years, startups play a big role in pushing the blockchain 149

technologies which is very recent and allows firms to scale-up without the need of 150

massive investment in tangible capital. The development of genome editing technologies 151

remains closely linked to university laboratories, with an important coordination effort 152

(see e.g. [29]). Using a simple classifier based on the name of the assignee and which can 153

be found here,1 we find that in 2019 about 12% of patents in genome editing are filed 154

by a university of a public research institution. This number is below 5% in all other 155

five technologies. 156

Last but not least, these six technologies have applications (or potential applications) 157

in a wide varieties of sectors. Additive manufacturing is already adopted in many 158

different industrial sectors, blockchain has implication in data processing but also in 159

finance, computer vision is an important brick of the development of AI systems, 160

genome editing is mostly concentrated in the pharmaceutical sector, hydrogen storage in 161

energy and self-driving vehicle in transport. 162

2 Materials and Methods 163

2.1 Automated patent landscaping with humans in the loop 164

In this section, we introduce automated patent landscaping, how it relates with existing 165

approaches in economics, what are its limitations and how we address them. 166

1See the corresponding repository.
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2.1.1 The traditional approach 167

Determining the scope and boundaries of a technology using the patent corpus, or 168

organizing patents into clusters, has been a longstanding challenge. A variety of 169

methods have been attempted in order to address this issue. The three main tools that 170

have been utilized are technological classifications, citations, and keywords. While each 171

of these tools can provide useful insights, they are also prone to introducing a significant 172

amount of noise and variability into the analysis. In this section, we provide qualitative 173

intuitions on these limitations. Section 3 will further quantify them. Technological 174

classes are based on technical principles which are only partially related to the concept 175

of technology we are looking for (functional application). Citations between patents 176

have clear limitations in this case as well. Patent-to-patent citations are generated in 177

order to define the scope of the technological monopoly granted to the patentees and to 178

assess the validity of a patent over prior art. Proximity in the sense of functional 179

application is then just one of the many reasons to generate a citation. Besides, the 180

network of citations is very sparse and a large number of patents are never cited [30]. 181

Finally, keywords can help identify patents dealing with a technology. However, 182

language is highly variational: there are many ways to mention the same idea and at 183

the same time a given word can have many different meanings. Hence, one can expect 184

neither comprehensiveness nor accuracy from keywords alone. In this context, 185

following [15], manual patent curation might appear to be the most accurate way to 186

delineate a technology in the patent corpus. 187

2.1.2 Automated patent landscaping 188

That is where the automated patent landscaping introduced recently by [9] makes an 189

important contribution. The authors develop a semi-supervised machine learning 190

framework to emulate human-made technology classification. The algorithm only 191

requires a small set of patents as input – the seed – which must be representative of the 192

technology of interest. The algorithm then expands to “likely related” patents using 193

both technological classes and citations (forward and backward). Specifically, it first 194

expands to technological classes which are overrepresented in the seed and then expands 195

twice on citations. Importantly, at this stage, we know that the resulting expansion set 196

includes patents unrelated to the target technology or “false positives”. The false 197

positives are then pruned out using a classification model, based namely on the patent 198

abstract, applied to the expansion set. 199

More precisely, the classification model is trained to distinguish between patents that 200

belongs to the seed and a set of patents randomly drawn from the universe of patents, 201

outside the expansion set (so-called anti-seed) and therefore “likely unrelated” to the 202

target technology. This approach ultimately returns a group of patents in the target 203

technology at virtually no cost, except for the curation of the seed patents. Importantly, 204

no human intervention is needed to elaborate the set of rules determining whether a 205

patent belongs or not to the target technology: semantic patterns are learned from the 206

data. 207

The approach described in [9] has already demonstrated a high level of potential, but 208

it still exhibits certain limitations that are worth noting. 209

First, the pruning model is trained on “polar” cases while we would prefer to apply 210

it to “intermediary” cases. The seed patents (positive examples) are selected to be at 211

the “core” of the target technology. On the contrary, anti-seed patents (negative 212

examples) are chosen from the complementary of the expansion set, hence potentially 213

very far away from the target technology. For example, when trying to select patents 214

related to the blockchain technology, the anti-seed might contain patents on drugs, car 215

engines and semi-conductors. Hence, even if the algorithm performs well on the 216
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validation set, it is not necessarily indicative of its performance when applied to patents 217

in the expansion set, which may contain a significant proportion of “intermediary” 218

examples. These examples may not be directly related to the target technology, but are 219

still relatively close to it in terms of their characteristics or features. Training the model 220

using a large majority of polar cases may therefore affect the overall validity of the 221

classification model and the performance of the algorithm. 222

Second, the algorithm does not adequately consider the effect of variations in the 223

data, such as the impact of changes to the seed data on the algorithm’s output. The 224

robustness of the algorithm, or its ability to produce consistent results despite variations 225

in the input data, is an important factor to consider when evaluating the reliability of 226

the results and the overall interpretation of the analysis. Robustness is a crucial aspect 227

to consider when assessing the confidence we can place in the results and the 228

conclusions that can be drawn from them. 229

2.1.3 A new extended approach 230

Our extended approach aims to address these two limitations. Firstly, we augment the 231

anti-seed with more challenging examples. These complex examples naturally emerge 232

from the human labeling of the seed patents tailored for each technology. We begin by 233

reviewing existing efforts in the literature to landscape our target technologies using 234

conventional methods. Specifically, we draw from this literature and their stipulated 235

selection criteria (often based on technological classes and/or keywords; see, for 236

example, [31], [32], and [33] for Blockchain–a comprehensive list of our sources is 237

provided in Supporting information S2-2). This guides us in generating a set of 238

indicative patents, keywords, and CPC classes to seed for each technology. Supporting 239

Information S2-3 elaborates on these criteria for each technology. Leveraging these 240

guidelines, we randomly sample a set of potential candidate patents and manually 241

inspect them by perusing their titles and abstracts, labeling them as either relevant to 242

the technology or not (refer to Supplementary Table S2-1). Crucially, we retain the 243

patents we exclude as they offer invaluable “hard examples”. Even though these patents 244

met one or more criteria set by prior landscaping attempts, human scrutiny based on 245

abstracts deemed them irrelevant. These typically represent the “intermediate” 246

examples we intend our classification model to learn from, ultimately differentiating 247

them from patents genuinely related to our target technology. We term this collection of 248

examples the augmented anti-seed. Ultimately, our model is trained using both the 249

traditional anti-seed as proposed by [9] and our augmented anti-seed to formulate the 250

negative samples. Supporting Information S2 delves deeper into our seed construction 251

process. 252

Second, we address the data variation question by implementing a series of 253

robustness tests based on random variations in the seed. Specifically, we investigate how 254

variations in the seed affect the expansion and the pruning outcomes. Formally, to test 255

the robustness of the expansion, we draw random subsets from the seed, run the 256

expansion using each of these subsets and compare the generated expansion sets. Next, 257

we assess the pruning robustness by iterating over various random train-test splits of the 258

annotated data. Various models are trained on varying sets of training data for each 259

technology. Pruning robustness is ultimately evaluated by looking at models’ agreement 260

on a sample of out-of-training patents. Detailed results are reported in Section 3. 261

3 Results and discussion 262

In this section we go through the main steps of the actual deployment of the algorithm 263

and we show that our results, in addition to being accurate and consistent, also exhibit 264
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patterns in line with technology experts’ expectations. 265

3.1 Algorithm deployment 266

To begin with, it is important to note that contrary to [9], we deploy the algorithm at 267

patent family level rather than at patent publication level. A patent family is a 268

collection of patent documents that are considered to cover a single invention in the 269

sense that they share the same priority claims. Their technical contents are identical. 270

Hence, considering only one document per family does not imply any loss of information 271

while significantly reducing the total number of items considered. We start from the 272

Google Patent dataset which counts around 120 million patent publications and 70 273

million patent families. Using patent family rather than publication has two important 274

practical advantages. First, it enables us to consider all families with at least one 275

publication having a known English abstract. That way, we ultimately cover more than 276

86% of all publications since 1970, while only 76% of patent publications do have a 277

non-null abstract in our database. Detailed coverage is reported in Figure S3-1 for the 278

main patent offices. Second, it minimizes the amount of texts to be classified at the 279

pruning stage. Each family is processed only once, even if it includes more than one 280

patent. This improves the overall computational tractability of the algorithm. Each 281

individual patent then inherits from the characteristics of its family. 282

Construction of the seed Next, we delve into the algorithm deployment itself. As 283

already discussed in Section 1, our work starts one step before the algorithm described 284

by [9]. This first step consists in the definition of rules to identify a set of candidates. 285

These candidates are picked out of patents which match at least one of the rules that we 286

were able to find in the specialized literature. These rules include technological classes, 287

keywords and patent similarity. Indeed, there are instances in the specialized literature 288

where specific patents are identified as being particularly representative or significant 289

for a particular technology. In our study, we used the patents most similar to these key 290

patents as defined in the Google Patents database and expand our dataset to include 291

these related patents. A random set of candidates are then labeled by humans based on 292

the abstract and detailed annotation guidelines (see Table S2-1). Annotation guidelines 293

guarantee both transparency and replicability. In practice, we labeled candidates until 294

at least 300 were accepted, forming the technology seed. Notably, the rule-based 295

candidates consistently contained a significant proportion of false positives, which we 296

excluded. This excluded set, termed the augmented anti-seed, contains in particular 297

patents that would have been mistakenly included in the target technology set if only a 298

simple rule-based approach had been applied. 299

Expansion Starting from the seed, the following step is the expansion. Regarding 300

this step, we mainly follow to the [9]’s procedure. We first expand to technological 301

classes that were over-represented in the seed and then expand twice using citations 302

(backward and forward). Note however that we had to adapt at the margin to take into 303

account our choice to work at family level rather than publication level. In particular, 304

we expressed citations in terms of the patent family rather than the usual publication 305

format. For each family, we considered all citations received (forward) and sent 306

(backward) by any patent in that family. 307

Pruning Finally, our pruning stage also differs from [9] along 3 dimensions. First 308

comes the composition of the training data. As already discussed, we add an augmented 309

anti-seed to the seed and anti-seed described in their paper. Second, while our 310

predecessors used not only text but also citations and technological classes as input to 311
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the classification model, we only restricted to text. In our view, both technological 312

classes and citations imply potential pitfalls at this stage. Using technological classes in 313

both the expansion and the classification model can generate pathological cases. 314

Assuming that all technological classes in the seed are found important, then the 315

anti-seed and the seed have no technological class in common which makes the 316

classification task trivial. Regarding citations, by construction, patents in the second 317

level of the citation expansion (L2) have no citations in common with the seed. Hence, 318

considering citations in the classification task implies a systematic and uncontrolled bias 319

against patents in the part of the expansion which we find undesirable. Third comes the 320

model itself. We implement 3 different neural network architectures popular for text 321

classification tasks: the multi-layer perceptron (MLP), the convolutional neural network 322

(CNN) and a transformer, specifically a pre-trained Bert encoder. We provide an 323

overview of these architectures in the following sub-section. The actual pruning is 324

performed using the Transformer model which exhibits both the highest performance 325

and consistency. 326

3.2 Performance and consistency 327

The most simple architecture we consider is the multi-layer perceptron (MLP). This 328

architecture can be seen as a stack of logistic regressions and treats tokens or groups of 329

tokens independently. Although it can be successful at identifying key phrases, it is 330

unable to handle context and might eventually be seen as a sophisticated phrase 331

matcher. We then turn to a second model and implement a Convolutional Neural 332

Network (CNN). This architecture leverages the sequential nature of text through the 333

use of feature maps (masks). These feature maps are there to detect sequences of tokens 334

with a common and discriminant “meaning”. CNN performances usually dominate 335

those of MLP models thanks to this enriched understanding of language. However, they 336

lack “memory” and cannot handle long context as feature maps typically focus on 3 to 5 337

token-long spans of text. Finally, we consider the Transformer architecture which was 338

recently introduced [34] and has achieved spectacular results in many natural language 339

processing (NLP) tasks, including text classification. Transformers rely on a core 340

mechanism called attention which enables them to “understand” tokens in the context 341

of neighboring tokens. Transformers are very large models trained at masked language 342

completion on very large texts and eventually fine-tuned on specific tasks (e.g. text 343

classification). This pre-training allows downstream users to start from a model that 344

already embodies a large “understanding” of language. A limited number of examples is 345

then enough to adjust weights and achieve high performances on more specific tasks in 346

specific contexts. This is especially well-suited when annotating examples is costly. The 347

main drawback of using Transformers is their high computational costs: transformers 348

are almost intractable using traditional Central Processing Unit (CPU) and require 349

Graphics Processing Unit (GPU). 350

Performance We then train all these models. The task is a standard binary text 351

classification. Specifically, we train and evaluate each model on ten distinct train-test 352

sets for each technology. We implement this approach as a cross-validation method to 353

have an estimate of the impact of random variations of the training set on both the 354

performance of the model and its out of (training) sample predictions - later called 355

consistency. Let us first focus on performance before moving to consistency later. We 356

report the median precision, recall and F1-score for each technology and model 357

architecture in Table 1. These metrics were all computed on the test set, that is, on 358

examples not used to train the model. The precision is the share of texts that the model 359

assigns to the seed and which are indeed part of it. The recall is the share of texts in 360
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the seed which were indeed predicted to be part of it. The F1-score is the arithmetic 361

mean of the precision and recall. We observe that MLP and CNN architectures tend to 362

exhibit similar F1-score. However, MLP models have higher precision and lower recall 363

than CNN. This relates to the fundamental nature of MLP. As stated earlier, MLP can 364

be seen as a sophisticated keyphrase matcher which usually has high precision but low 365

recall. In any case, the transformer outperforms both of the models and achieves around 366

90% of median F1-score for all technologies except for self-driving vehicles (79%). This 367

latter technology is indeed harder to classify even for humans. The very same 368

technology can be used to automate driving or to assist human driving. In the former 369

case, we would accept a patent while in the latter it would be rejected. In the rest of 370

the paper, we will use results from this latter model. 371

Table 1. Models performance.
MLP CNN TRF

P R F1 P R F1 P R F1

Additive Manufacturing 0.89 0.79 0.84 0.79 0.85 0.81 0.86 0.92 0.89
Blockchain 0.90 0.81 0.86 0.83 0.88 0.86 0.97 0.98 0.97
Computer Vision 0.89 0.81 0.85 0.86 0.87 0.87 0.87 0.95 0.90
Genome Editing 0.89 0.87 0.88 0.87 0.91 0.88 0.86 0.94 0.89
Hydrogen Storage 0.86 0.73 0.80 0.76 0.83 0.78 0.92 0.98 0.93
Self-driving Vehicle 0.79 0.65 0.71 0.69 0.73 0.71 0.75 0.85 0.79

Reported performance metrics were computed on the test set - unseen during training.
Performance metrics are reported as follows: P for precision, R for recall and F1 for
F1-score.

Consistency As already discussed, although performance per se matters, it is also 372

crucial to understand how variations in the seed data can affect the results of the 373

algorithm. We identify two channels. First, data variations can affect the expansion. 374

The latter depends on the seed and has a critical role. It determines the set of 375

documents which will be considered by the pruning model. Second, data variations can 376

affect the pruning itself. The pruning model depends on the seed, the anti-seed and the 377

augmented anti-seed and ultimately determines which documents in the expansion are 378

to enter the technology or not. Robustness to random variations in the data is then 379

crucial to ensure that algorithm results can be exploited rigorously. To investigate the 380

consistency of the expansion, we generate random subsets of the seed. Specifically, we 381

consider 3 different sizes: 90%, 70% and 50% of the initial seed and draw 10 subsets for 382

each size. We then proceed to the full expansion starting from these distinct seeds and 383

compute the pairwise family overlap of the generated expansion sets for each technology 384

and seed size. Detailed results are reported in Table 2. We find that the average 385

pairwise family overlap exceeds 89% in all cases. This remarkably high number 386

indicates a high level of consistency for the expansion step and reassure regarding the 387

relevant of the delimited technology. 388

Next, we looked at how the pruning stage is affected by variations in the training 389

data. As discussed above, we trained the same architectures on 10 different train-test 390

splits (of respective size 80%-20%) for each technology as a way to emulate natural 391

variations in the data. We then apply these models to a set of 10,000 392

out-of-training-sample documents randomly drawn from the expansion. For each 393

technology, we then look at the standard deviation of the ten scores (each score ranging 394

between 0 and 1) for each document and report its median in Table 3. We find that the 395

standard deviation of the predicted scores is usually very low, most of the time below 396

0.05 which supports the consistency of the pruning step. 397
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Table 2. Median pairwise expansions overlap.

90% 70% 50%

Additive manufacturing 0.99 0.93 0.89
Blockchain 0.99 0.98 0.96
Computer vision 0.99 0.96 0.92
Genome editing 0.99 0.99 0.98
Hydrogen storage 0.99 0.97 0.95
Self-driving vehicle 0.99 0.97 0.95

For each size (90%, 70% and 50%), we drew 10 random subsets of the seed and
proceeded to an expansion. For each pair, we computed the share of families in the two
expansions. We report the median share of overlapping families across all expansion
pairs.

Table 3. Models robustness (Median dispersion in predicted scores).

MLP CNN TRF

Additive manufacturing 0.029 0.082 0.017
Blockchain 0.008 0.047 0.003
Computer vision 0.015 0.029 0.010
Genome editing 0.003 0.001 0.004
Hydrogen storage 0.015 0.037 0.005
Self-driving vehicle 0.039 0.091 0.011

For each model architecture, we trained 10 models using distinct random subsets (80%)
of the training set. Each model was then applied to a set of 10,000 texts (out of training
set). We report the median standard deviation (at the sample level) of the predicted
scores across models.

To summarize, our evaluation of the performance and consistency of the extended 398

patent landscaping is very encouraging. In the next section, we take a first look at the 399

set of patents that constitute each of the six technologies and consider the external 400

validity of our approach. 401

3.3 External validation 402

We now use the output of the algorithm to investigate whether our results make sense. 403

To do so, we first consider the top assignees and top inventors as reflected by the total 404

number of patents they hold. To identify individuals and firms, we used the harmonized 405

name of assignees and inventors from the IFI CLAIMS dataset (available through 406

Google Patent public data). It is however important to note that this harmonization 407

does not always guarantee that two different names of the same entities are actually 408

merged in the same entity (e.g. Toyota Motor Co Ltd and Toyota Motor Corps). We do 409

it for each studied technology and then confront these results with prior insights from 410

technology-specialized literature as well as background checks. These lists of top 411

assignees and inventors are reassuringly consistent with our priors and existing 412

information. They also provide insights about the main actors of the different 413

technologies considered. Finally, we also use the PatCit dataset [35] and look at the top 414

3 most cited academic articles by patents in each technology. 415

November 23, 2023 10/17



3.3.1 Top 10 assignees by technology 416

Top panel of Table 4 reports the top 10 assignees for each technology by the number of 417

patents they were granted worldwide. 418

A first observation is that most of the obvious players in each technology are present. 419

For the sake of brevity, we focus on some remarkable high-ranked agents for each 420

technology and explain why they were indeed expected. Starting with additive 421

manufacturing, Xerox and Hewlett-Packard are two large companies that traditionally 422

developed printers and which naturally moved to 3D printing technologies. In the field 423

of blockchain, Alibaba, Intel, nChain and IBM are also in the top list of assignees in the 424

expert-based landscaping of blockchain innovation proposed by [32]. The most prolific 425

assignees in the field of Computer vision include firms that build and sell electronic 426

devices, including cameras (Canon, Sony etc...). Interestingly, the top assignees in the 427

field of genome editing are universities such as University of California Berkeley, 428

Harvard University and University of Pennsylvania. As explained in Section 1.3, this 429

technology as the characteristics of being very tightly connected to the academic world 430

and breakthrough advances have been made in the laboratories of famous universities. 431

Nevertheless, the list also reports large companies that develop chemistry and 432

pharmaceutical products like Regeneron and Dupont. Overall, these findings are 433

consistent with results from an overview of patenting in the genome editing technology 434

field proposed by [36]. The field of hydrogen storage technologies is primarily 435

dominated by car manufacturers, reflecting the primary use of this technology to power 436

hydrogen-propelled vehicles. Similarly, the realm of self-driving cars features many 437

traditional car manufacturers, notably including Toyota and Ford, both of which 438

actively publicize their advancements in autonomous vehicle development. The roster of 439

leading assignees also features automotive equipment suppliers like Bosch and Denso 440

Corp. Notably, Toyota, Ford, and Bosch are highlighted as top assignees in the field 441

according to Chapter 3 of [37]. 442

On top of very large firms that spread over a large number of different technologies 443

such as IBM and Samsung, we also note the presence of a number of firms that are 444

much more specialized in a specific field. This is notably the case of Air Liquide for 445

hydrogen storage, nChain for blockchain, ASML for additive manufacturing, Regeneron 446

pharma for genome editing and Denso Corp for self-driving cars. 447

3.3.2 Top 10 inventors 448

Moving from firms to people, the bottom panel of Table 4 reports the top 10 inventors 449

for each technology by the number of patents they were granted worldwide. 450

As previously, for the sake of brevity we focus on the most emblematic and 451

high-ranked inventors. We can note the presence of Marta Karczewicz in both 452

Blockchain and Computer Vision. M. Karczewicz is a prolific inventor working at 453

Qualcomm Technologies, Inc.. She is famous for having developed many technologies 454

related to data compression which facilitates the transfer of important mass of 455

information. The methods she developed are very central for many computer-related 456

technologies such as computer vision and blockchain. As a recognition for her 457

contributions, the EPO named her one of the three finalists for the award of European 458

inventor of the year 2019 [38]. Considering additive manufacturing, the most prolific 459

inventor in the field is Kia Silverbrook. He is also a famous inventor who holds more 460

than 9,000 patents worldwide [39]. K. Silverbrook founded Silverbrook Research, a 461

company that developed digital printing and 3D printing technologies, among other 462

inventions. In the field of genome editing, our top inventor is Andrew Murphy. He is 463

the vice president in charge of research of Regeneron, a biotechnology company that 464

develops different drugs and recently made important progress in new therapies using 465
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Table 4. Top 10 assignees and top 10 inventors.
Additive manufacturing Blockchain Computer vision Genome editing Hydrogen storage Self driving vehicle

Top assignees

1 Samsung Electronics Co Ltd Alibaba Group Holding Ltd Canon KK Univ California Toyota Motor Co Ltd Toyota Motor Co Ltd

2 Hewlett Packard Development Co IBM Sony Corp Pioneer Hi Bred Int Honda Motor Co Ltd Bosch Gmbh Robert

3 Xerox Corp Qualcomm Inc Samsung Electronics Co Ltd Du Pont Nissan Motor Honda Motor Co Ltd

4 Asml Netherlands BV Samsung Electronics Co Ltd Koninkl Philips Electronics NV Regeneron Pharma Toyota Motor Corp Nissan Motor

5 Gen Electric LG Electronics Inc Matsushita Electric Ind Co Ltd Genentech Inc Matsushita Electric Ind Co Ltd Ford Global Tech LLC

6 Eastman Kodak Co Sony Corp Sharp KK Monsanto Technology LLC Sanyo Electric Co Denso Corp

7 Canon KK NChain Holdings Ltd Seiko Epson Corp Harvard College Hyundai Motor Co Ltd Toyota Motor Corp

8 Fujifilm Corp Huawei Tech Co Ltd Lg Electronics Inc Hoffmann La Roche Air Liquide Hyundai Motor Co Ltd

9 Siemens AG Intel Corp Qualcomm Inc Univ Pennsylvania Panasonic Corp Mitsubishi Electric Corp

10 IBM Ericsson Telefon Ab L M IBM Centre Nat Rech Scient GM Global Tech Operations Inc Bayerische Motoren Werke AG

Top inventors

1 Silverbrook Kia Karczewicz Marta Karczewicz Marta Murphy Andrew J. Ovshinsky Stanford R. Tabata Atsushi

2 Lapstun Paul Zhang Li Zhang Li Macdonald Lynn Ukai Kunihiro Shimizu Yasuo

3 Ng Hou T. Zhang Kai Nishi Takahiro Mcswiggen James Edlund David J. Nordbruch Stefan

4 Vermeersch Joan Wright Craig Steven Kondo Tetsujiro Zhang Feng Fetcenko Michael A. Hayakawa Yasuhisa

5 Van Damme Marc Qiu Honglin Wang Ye-kui Rosen Craig A. Taguchi Kiyoshi Lynam Niall R.

6 Lewis Thomas E. Yang Xinying Chen Ying Stevens Sean Wakita Hidenobu Watanabe Kazuya

7 Zhao Lihua Wang Yue Chen Jianle Ruben Steven M Maenishi Akira Yasui Yoshiyuki

8 Patibandla Nag B. Liu Hongbin Yamazaki Shunpei Wilson James M. Young Kwo Liu Jun

9 Ganapathiappan Sivapackia Wang Zongyou Kadono Shinya Ni Jian Nishio Koji Breed David S.

10 Ye Jun Fukushima Shigeru Sugio Toshiyasu Gurer Cagan Reichman Benjamin Matsuno Koji

Assignees and inventors are ranked based on the total number of patents for each
technology over the whole corpus of patents. The harmonization of assignees’ names is
taken from the CLAIMS dataset.

CRISPR [40]. We also note the presence of Feng Zhang, a Professor at MIT and 466

researcher at the Broad Institute. He is well known for his role in the development of 467

optogenetics and CRISPR. He is also famous for his ongoing patent dispute with 468

Chemistry Nobel Prize recipients J. Doudna and E. Charpentier over CRISPR-cas9 469

human application priority. Next, regarding hydrogen storage, Stanford R. Ovshinsky 470

was a prolific inventor and engineer who contributed enormously to various fields, 471

including energy science, and own hundreds of patents. In particular, he developed solid 472

hydrogen storage technologies and founded the company Ovshinsky Innovation LLC at 473

the end of his life to continue to explore alternative sources of power. Finally, in 474

self-driving vehicle technology, Atsushi Tabata is an engineer at Toyota who published 475

several articles related to the automation of driving controls. 476

3.3.3 Top academic publications 477

As a last exercise, we use the PatCit database [35,41] to look at the most cited academic 478

papers by technology. PatCit is a tool that lists all citations from patents to research 479

articles (also known as Non Patent Literature citations) that were used as a source. We 480

report these articles along with the corresponding journal title in Table 5. To save 481

space, we only report the top 3 for each technology but a longer list of doi is available in 482

Table S3-2 in the Supplementary Appendix. As expected, the most cited articles, i.e. 483

those that were the most pivotal in producing the ideas used in the development of the 484

patents of each technology, are published in journal that are related to the technology. 485

These journal can have a direct and clear link, for example, the International Journal of 486

Hydrogen Energy is mentioned for hydrogen storage and the Proceedings Eighth IEEE 487

International Conference on Computer Vision for computer vision. 488

However, the links may also seem less obvious, reflecting the complexity of 489

externalities from academic research to the development of innovations. For example, 490

the second most cited article for self-driving vehicle is a 1982 research that discusses 491

CO2 concentration in the atmosphere. Since one of the goals of autonomous cars is to 492

reduce the carbon footprint of transportation, this topic is often mentioned and 493
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Table 5. 3 most cited articles by technology.
Title and Journal

Additive Manufacturing
1 Immersion lithography at 157 nm

Journal of Vacuum Science & Technology B
2 Diaryliodonium Salts. A New Class of Photoinitiators for Cationic Polymerization

Macromolecules
3 Intelligent paper

Electronic Publishing, Artistic Imaging, and Digital Typography
Blockchain
1 The design and implementation of a log-structured file system

ACM SIGOPS Operating Systems Review
2 Scale and performance in a distributed file system

ACM SIGOPS Operating Systems Review
3 A case for redundant arrays of inexpensive disks (RAID)

Proceedings of the 1988 ACM SIGMOD international conference on Management of data
Computer Vision
1 Overview of the H.264/AVC video coding standard

IEEE Transactions on Circuits and Systems for Video Technology
2 Rapid object detection using a boosted cascade of simple features

Proceedings of the 2001 IEEE Computer Society Conference
3 Robust real-time face detection

Proceedings Eighth IEEE International Conference on Computer Vision
Genome Editing
1 Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells

Nature
2 Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate

The EMBO Journal
3 RNA interference is mediated by 21- and 22-nucleotide RNAs

Genes & Development
Hydrogen Storage
1 Compact methanol reformer test for fuel-cell powered light-duty vehicles

Journal of Power Sources
2 Steam reforming of natural gas with integrated hydrogen separation for hydrogen production

Chemical Engineering & Technology
3 A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst

International Journal of Hydrogen Energy
Self-driving Vehicles
1 Adaptive Cruise Control System Aspects and Development Trends

SAE Technical Paper Series
2 Atmospheric CO2 Content in the Past Deduced from Ice-Core Analyses

Annals of Glaciology
3 Advanced public transport information in Munich

International Conference on Public Transport Electronic Systems

Top 3 academic papers cited in the patents in each of the six technologies on the front
page retrieved using PatCit [35].

discussed in the relevant patents. 494

3.4 Discussion 495

Comparison with other approaches Using our candidate annotation exercise, we 496

can compare those results with the performance that would have been obtained based 497

on the rules used by existing attempts to landscape our six technologies of interest. 498

Specifically, it enables us to obtain performance metrics for rule-based approaches using 499

technological class, keywords and patent similarity. Although our approach does not 500

enable us to compute all the performance metrics reported before, we can compute the 501

precision of simpler approaches (for example using only a set of relevant keywords). We 502

find that rule based candidate selection delivers both low and variable precision 503
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performances across technologies. Specifically, precision from CPC-class rule-based 504

patent selection ranges from 0.01 (blockchain) to 0.34 (additive manufacturing). 505

Precision from keyword rule-based selection goes from 0.09 (blockchain) to 0.89 (genome 506

editing) for an average of 0.32. Precision from patent similarity ranges from 0.02 507

(additive manufacturing) to 0.57 (genome editing). All these metrics are reported in 508

Table S3-1. It clearly appears that our approach to delineate technologies from the 509

corpus of patents not only achieves good performance but also outperforms traditional 510

rule-based methods. Hence, the set of patents selected using this new approach is both 511

more precise and more complete than those of most existing attempts. 512

Our approach to constructing the seed and anti-seed for patent classification, though 513

more labor-intensive, offers clear advantages. By meticulously designing the seed and 514

anti-seed, we ensure that our classifier focuses on discriminating between closely related 515

cases, enhancing precision in complex scenarios. This contrasts with methods such as 516

those by [9], which are trained on more distinct, polar cases. Our advanced 517

transformer-based architecture further supports this nuanced approach, enabling more 518

effective and efficient handling of large patent datasets. The comprehensive effort in 519

seed construction, while demanding, facilitates a robust and transparent classification 520

framework, effectively addressing potential biases and ensuring balanced classifications. 521

As such, while our methodology may not lend itself to direct performance comparisons 522

with existing rule-based approaches due to its distinct foundational principles, it 523

represents a significant advancement in the field of automated patent classification, 524

providing a more accurate and comprehensive understanding of technology landscapes. 525

Data and Code availability We release the materials (including code and datasets) 526

as well as clear guidelines to replicate our work: 527

• Github repository 528

• Guidelines and API 529

• Final data 530

• Notebook replicating the results 531

Use and misuse of this classification Our methodology offers flexibility in 532

extending to various technologies, providing researchers a robust framework to delineate 533

technologies through meticulous seed construction, adhering to our “automated with 534

human in the loop” approach. Key to this extension is the precise definition of the set 535

of tasks and stringent rules for patent inclusion in the seed, as these are crucial for 536

maintaining the output’s quality. Specifically, it necessitates selecting technologies 537

characterized by well-defined functional applications (e.g. solar photovoltaic materials, 538

hardware for quantum computing, biodegradable plastic, battery technology for electric 539

vehicle etc...). While our approach is versatile, we recommend caution when applying it 540

to broad and multifaceted concepts such as AI or green innovation. These terms often 541

encompass a diverse range of notions, which might challenge the specificity required for 542

our methodology. However, specific technologies within these broader domains can 543

certainly be effectively delineated using our approach. This recommendation is aimed at 544

preserving the accuracy and relevance of the classification, ensuring that the 545

methodology is applied where it can be most effective and meaningful. 546

Ethical concerns In the context of automated patent classification, it is essential to 547

address associated ethical considerations. Our methodology integrates both automated 548

processes and human oversight. This integration aims to rectify potential biases that 549

might arise from exclusive reliance on automation, ensuring a more robust and 550
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transparent classification framework. By utilizing a diverse and representative training 551

dataset, we actively mitigate the risk of unbalanced classifications, which could 552

inadvertently misguide research and development trajectories. Moreover, our approach 553

remains consistent with the public domain status of patents, circumventing potential 554

privacy complications. Thus, our methodology offers not just efficiency in patent 555

landscaping but also a conscious alignment with ethical best practices in academic 556

research. 557

Conclusion 558

In this study, we have refined and built upon the methodology introduced by [9], 559

facilitating the reliable differentiation of frontier technologies within the global patent 560

corpus. Our method’s efficacy stems from its precision, adaptability, and consistent 561

results across diverse technological domains and requires only a minor expert judgment 562

to generate a relevant seed. 563

Our approach could hold value for researchers and analysts seeking to understand 564

the contributions of various stakeholders–whether nations, institutional groups, or 565

individual firms–within specific technological arenas. For those intent on pinpointing 566

major contributors to nascent technologies or tracking developmental trajectories, our 567

methodology provides a systematic and effective framework for such analyses. 568
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